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Sébastien Aumaı̂tre,1,2 Kirone Mallick3 and François Pétrélis1
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A bifurcating system subject to multiplicative noise can exhibit on–off intermittency
close to the instability threshold. For a canonical system, we discuss the dependence of
this intermittency on the Power Spectrum Density (PSD) of the noise. Our study is based
on the calculation of the Probability Density Function (PDF) of the unstable variable.
We derive analytical results for some particular types of noises and interpret them in
the framework of on-off intermittency. Besides, we perform a cumulant expansion (N.
G. van Kampen, 24, 171 (1976).) for a random noise with arbitrary power spectrum
density and we show that the intermittent regime is controlled by the ratio between the
departure from the threshold and the value of the PSD of the noise at zero frequency.
Our results are in agreement with numerical simulations performed with two types of
random perturbations: colored Gaussian noise and deterministic fluctuations of a chaotic
variable. Extensions of this study to another, more complex, system are presented and
the underlying mechanisms are discussed.

KEY WORDS: Dynamical systems, stochastic dynamics, on–off intermittency, effect
of noise on bifurcations
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1. INTRODUCTION

Most patterns observed in nature are created by instabilities that occur in an
uncontrolled noisy environment: convection in the atmospheric layers and in the
mantle are subject to inhomogeneous and fluctuating heat flux; sand dunes are
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formed under winds with fluctuating directions and strengths. The fluctuations
usually affect the control parameters driving the instabilities, such as the Rayleigh
number which is proportional to the imposed temperature gradient in natural
convection. Thus, these fluctuations act multiplicatively on the unstable modes. In
the same spirit, the evolution of global quantities, averaged under small turbulent
scales, can be represented by a nonlinear equation with fluctuating global transport
coefficients that reflect the small scales complexity. For instance, it has been shown
that the temporal evolution of the total heat flux in rotating convection can be
described by a non–linear equation with a multiplicative noise. (2) The dynamo
instability that describes the growth of the magnetic field of the stars and some
planets because of the motion of their inner conducting fluid in their cores, is
usually analyzed in similar terms: the magnetic field is expected to grow at large
scale, forced by a turbulent flow. Here again, the parameters controlling the growth
rate of the field are fluctuating. (3)

Since the theoretical predictions of Stratonovich, (4) and the experimental
works of Kawaboto, Kabashima and Tsuchiya, (5) it is well known that a mul-
tiplicative noise may modify an instability process. These early investigations
motivated numerous studies on the effect of multiplicative noise on an instabil-
ity threshold. It can be shown in many cases that the noise induces a drift for
the instability threshold (see for instance(6,7,11,12,13)). Besides, T. Yamada et al. (8)

have shown that multiplicative noise can lead to a new type of intermittency,
called On–Off Intermittency, in which quiet and laminar (off) phases randomly
follow bursting (on) phases. This intermittency has been identified in experiments
in various fields: electronics, electro-hydrodynamic convection in nematics, gas
discharge plasmas and spin-wave instabilities. (9)

Most of the theoretical works considered only the effects of a delta–correlated
Gaussian white noise or an Ornstein–Uhlenbeck noise with an exponentially de-
caying correlation function (see for instance the discussion in ref. 7). However,
with these types of noises that have at most one characteristic time scale, it is
difficult to identify which parts of the Power Spectrum Density (PSD) of the
random forcing really affect the dynamics. On the contrary, the noise in natural
environment and also in experimental situations is far from being a white random
process. Therefore, we believe that the influence of the noise PSD on an on-off
intermittent dynamics deserves to be investigated more precisely.

To motivate further reading of this article, we show in Fig. 1 the temporal
traces of an unstable variable subject to two different multiplicative noises. Both
noises have the same standard deviation but different power density spectra. More
precisely, in Fig. 1a, the PSD of the noise has a higher value at zero frequency
than in Fig. 1b. It is clear that the intermittent regime is suppressed if the low
frequencies of the noise are reduced even if the standard deviation of the noise is
kept constant. To understand this fact, we study in Sec. 2 a canonical system and
calculate the PDF of the dynamical variable with different methods: exact results
for some special types of noises and a perturbative expansion valid for a small
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noise amplitude. In Sec. 3, we compare the predictions of this expansion with
numerical simulations. We also study the relation between the low frequencies
of the noise PSD and the statistics of the duration of the laminar phases in the
intermittent regime (Sec. 4). In Sec. 5, we present numerical simulations of a
bifurcating system of second order in time. We finally give a physical explanation
for the relevance of the noise spectrum at zero frequency for on-off intermittency
(Sec. 6).

Some of the results of this article were published in our letter. (10) We give here
details on the derivation of these results (Sec. 2 and 3). Besides new systems are
investigated (Secs. 2.3 and 5) and a new aspect of the phenomenon is highlighted
(Sec. 4).

2. ANALYTICAL PREDICTIONS

2.1. Case of a Gaussian White Noise

We consider the simple system proposed in ref. 8 to describe on–off inter-
mittency:

Ẋ = (a + ζ (t))X − X3, (1)

where ζ is a random process with zero mean. This equation describes the evolution
of a variable X with instantaneous departure from onset a + ζ (t) and cubic nonlin-
earity. Without noise (ζ = 0), Eq. (1) has the fixed points: X = 0 and X = ±√

a
for a > 0. The former one is stable for negative a and the latter are stable for
positive a.

Let ζ (t) be a Gaussian white noise with 〈ζ (t)ζ (t ′)〉s = Dδ(t − t ′) where 〈〉s

is the average on the realizations of the noise. The Langevin Eq. (1) is interpreted
as a Stratonovich equation. The stationary Probability Density Function of X can
be calculated from the Fokker–Planck equation (6) and is given by

P(X ) = C |X | 2a
D −1 e− X2

D , (2)

for a > 0; P(X ) = δ(X ) if a ≤ 0. Here, C is a normalization constant.
Several features can be noticed. For positive a, there are two different be-

haviors. When 2a > D, the most probable values are Xmp = ±√
a − D/2 but

when 2a ≤ D the most probable values vanish and P(X ) diverges as X → 0.
For a small departure from threshold, i.e., 2a/D � 1, P(X ) is dominated by a
decreasing power law over a large range of X and all moments of X grow linearly
with a. Indeed, Eq. (2) implies that 〈X2n〉 = Dn�n−1

j=0(a/D + j) which leads to

〈X2n〉 	 aDn−1(n − 1)! when 2a/D is small.
As pointed out in ref. 8, the form of the PDF for small X is related to the

on–off intermittent character of the variable X : The occurrence of laminar phases
are responsible for the divergence of the PDF at X = 0.
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Fig. 1. Temporal traces of the dynamical variable X (t) solution of Eq. (1) with a noise of autocorrelation
function given by (14). In both cases, a = 0.00125, α2 = 0.005. In (a), η = � = 0.25 i.e., a/S =
0.3927; in (b), η = � = 2.5 i.e., a/S = 3.9270.

2.2. Expansion for a Colored Noise

White noise, with all frequencies having the same weight, does not allow
to discriminate which frequencies play a role in the occurrence of on-off inter-
mittency. However, as it clearly appears in Fig. 1, two non-white noises with the
same standard deviation but different spectral densities at zero frequency, lead to
dynamics that are qualitatively different. Indeed, if the value of the noise PSD
at zero frequency is reduced, the laminar phases around zero, that characterize
on–off intermittency, can even be suppressed.

To analyze quantitatively this phenomenon, we apply the cumulant expansion
to Eq. (1). The resulting equation for the PDF of X is of the Fokker-Planck type
and, in the case under study, is given by

∂t P = ∂x

(((
1 + S − M

a

)
X3 − (a + S)X

)
P

)

+ ∂x2

((
SX2 + M − S

a
X4

)
P

)
. (3)

The derivation of this equation is presented in Appendix. The two coefficients that
appear in this effective Fokker-Planck equation depend on the noise as follows

S =
∫ ∞

0
〈ζ (0)ζ (τ )〉sdτ,

M =
∫ ∞

0
〈ζ (0)ζ (τ )〉s e−2aτ dτ. (4)
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The parameter S is given by the integral of the autocorrelation function of the
noise and is equal to half of the PSD of the noise at zero frequency by virtue of
the Wiener–Khintchine theorem. The parameter M is also related to the integral
of the autocorrelation function but with a reduced weight of its long-time values.
The steady state solution of Eq. (3) for the generic case S �= 0 and S �= M is given
by

P(X ) = C |X | a
S −1

∣∣∣∣1 + (M − S)X2

S a

∣∣∣∣
−

(
1+ a M

2 S (M−S)

)
, (5)

where C is a normalization constant. Note that this expansion is valid when the
product of the time correlation of the noise with its amplitude is small. (1,14)

The behavior of the PDF for small X is a power law with exponent a/S − 1.
Consequently, the criterion for on-off intermittency, in the sense that the PDF of
the variable diverges for small X , is

S > a . (6)

In other words, the variable is on-off intermittent when the value of the noise
spectrum at zero frequency is greater than twice the departure from onset.

We also notice from the power law form of the PDF that all the moments
< X2n > grow linearly with the departure from onset a, in the limit of small a.
As in the case of a Gaussian white noise, this behavior is related to the form of
the PDF in the vicinity of the unstable fixed point and thus to the occurrence of
on-off intermittency.

2.3. An Exactly Solvable Case: The Dichotomous Poisson Process

It is also possible to calculate the PDF of X , solution of Eq. (1), in the case
where the noise is a dichotomous Poisson process. This problem was studied in ref.
15. We sum it up here and then discuss the consequences on the on-off intermittent
regime.

The noise has only two possible values ±	 and during a time dt switches
from one value to the other with a probability λdt . We thus obtain

< ζ (t)ζ (0) >s= 	2 e−2λt . (7)

Let P+(x, t) and P−(x, t) be the probabilities for the variable X to attain the value
x at time t when the noise is 	 and −	, respectively. These probabilities follow
the equations

∂ P+
∂t

= − ∂

∂x
(((a + 	)x − x3) P+) − λ(P+ − P−),

∂ P−
∂t

= − ∂

∂x
(((a − 	)x − x3) P−) − λ(P− − P+) . (8)
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We consider the case where a is positive so that the fixed point X = 0 is
unstable. Intermittency may occur only if 	 > a so that the effective growth rate
a + ζ (t) can be negative. In that case, the stationary PDF of X is given by

P(X ) = P+(X ) + P−(X )

= C |X | 2aλ

	2−a2 −1|X2 − (a + 	)| λ
2(a+	) −1

×|X2 + 	 − a|− λ
2(	−a) −1

, (9)

where C is a normalization constant. The PDF of X diverges at small X and
therefore X is on-off intermittent if

2aλ

	2 − a2
< 1 . (10)

From Eq. (7) we calculate the parameter S :

S =
∫ ∞

0
< ζ (t)ζ (0) >s dt = 	2/(2λ), (11)

and write the criteria for on-off intermittency as

S ≥ a

1 − a2

	2

. (12)

We emphasize that this result is valid for any noise amplitude and correlation
time as long as 	 > a > 0. When the product of 	2 with the time correlation
λ−1 of the noise is small, we have S � 1 and the criterion (6) is recovered. At
higher noise amplitudes, we have an explicit expression for the onset of on-off
intermittency. Here again, if the parameter S is lowered and the noise standard
deviation 	2 is fixed, on-off intermittency disappears.

3. NUMERICAL STUDIES

3.1. Stochastic Colored Noise

We verify numerically the predicted expression for the PDF, given in Eq. (5).
To wit, we use a colored noise with two characteristic frequencies, � and η. This
noise is generated from the following dynamics: (16)

Ȧ = −4πηA − 4π2(�2 + η2)ζ + (4π )3/2
√

η(�2 + η2)/2αξ,

ζ̇ = A, (13)
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where ξ is a Gaussian white noise with 〈ξ (t) ξ (t ′)〉s = δ(t − t ′). This equation
leads to the following autocorrelation function

〈ζ (t) ζ (t + τ )〉s = α2 exp(−2πη|τ |)
(

cos(2π�τ ) + η

�
sin(2π�|τ |)

)
, (14)

where α2 is the noise variance and tc = (2πη)−1 is its correlation time. In this
case, we obtain (18)

S = α2η/[π (η2 + �2)],

M = α2(η + a/(2 π ))/[π ((η + a/π )2 + �2)] . (15)

Therefore by varying η and �, we can tune independently a/S and α(2πη)−1.
The Gaussian white noise is recovered in the limit η → ∞ with α2/η = D. The
Eqs. (1) and (13) are solved numerically using a fourth-order Runge-Kutta scheme
and an Euler implicit method, respectively. Note from Eq. (1) that X conserves its
sign throughout its evolution. In the following, we consider only positive initial
values for X (t = 0) without lack of generality.

In Fig. 1, we plot some temporal traces of X . Both curves were obtained
for the same values of the noise variance α2 and departure from threshold a. In
Fig. 1a, we have taken S > a; in Fig. 1b, the chosen value of S is ten times smaller
so that the ratio a/S becomes larger than unity. In the latter case, intermittency is
clearly suppressed, illustrating the fact that no intermittency occurs when the PDF
P(X ) does not diverge at X = 0.

In Fig. 2, we show that the two PDFs corresponding to the temporal traces of
Fig. 1a and b are very well described by Eq. (5). We remark that for small values
of X , the PDF behaves as a negative power law when a/S < 1, as expected in the
intermittent regime.

In Fig. 3, the intermittent domain and the non–intermittent domain are delim-
ited in the (S, a)–plane. Intermittency disappears when the most probable value,
Xmax, becomes non-zero. The behavior of Xmax as a function of a for S = 0.27 is
shown in the inset of Fig. 3. For noises with different spectrum, we increase a and
determine when on-off intermittency disappears. We observe that the line S = a
does indeed separate the two regimes. Note that the expansion leading to Eq. (6)
is valid when ατc � 1, this condition is fulfilled in the simulations we present.

3.2. Deterministic and Chaotic Fluctuations as a Noise

Up to now, the only fluctuating parameters we have considered are stochastic
processes. However, it is tempting to test the prediction of Eq. (5) in the case of a
deterministic but chaotic fluctuating parameter. The noise is calculated from the
chaotic solution of the Lorenz system. (22) We thus solve

U̇ = −σ (U − Y ), Ẏ = rU − Y − U Z , Ż = UY − bZ , (16)
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Fig. 2. PDF of the solutions of Eq. (1) for the colored noise given by (14). The symbols (×) and (+)
correspond, respectively, to the parameters used in Fig. 1a and b. The full lines are the corresponding
theoretical approximations given by (5). The inset emphasizes the good agreement of the predicted
power law in log–log axes.
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Fig. 3. Boundary of the intermittent domain above the threshold a ≥ 0 in the (S, a)–plane. The open
triangles () show the intermittent domain where the most probable value Xmax of the PDF of X is
null. The open circles (◦) show the non–intermittent domain where the most probable value Xmax is
different from 0. The full squares (�) indicate the values of the parameters for which Xmax differs from
0 for the first time in our simulations performed using increasing values of a. The straight line S = a
is the expected boundary predicted by Eq. (5). The stars (∗) in the inset show the most probable value
Xmax, as obtained from the numerical simulations of Eq. (1); the full line in the inset is the theoretical
expression Xmax = √

a(a − S)/(a + 3(M − S)) (a > S), which is derived from Eq. (5).
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Fig. 4. Solutions of Eq. (1) with ζ obtained from the Lorenz system (see Fig. 5). The departure
from onset is a = 0.01, the noise standard deviation is

√
< ζ 2 > = 0.2. (a): µ = 0, (b): µ = 0.5, (c):

µ = 0.65, (d): µ = 0.8.

and define ζ as

ζ = α
(1 − µ)Un + µU̇n

c
, (17)

where c2 =< ((1 − µ)Un + µU̇n)2 >, Un = U−<U>√
<(U−<U>)2>

and U̇n =
U̇−<U̇>√

<(U̇−<U̇>)2>
. Averages are now understood as long time averages. The

role of c is to insure that α is the amplitude of the noise, i.e.,
√

< ζ 2 > = α.
The parameter µ is tuned between zero and one in order to change the value of
the spectrum at zero-frequency. Indeed U̇ being the derivative of U , its power
spectrum at low frequencies is smaller than that of U . Increasing µ increases the
magnitude of U̇ and thus reduces the spectrum of the noise at low frequencies
(and accordingly the value of S).

The Eqs. (1 and 16) are solved with matlab using the same methods as in
Sec. 3.1. We choose r = 25, σ = 10 and b = 8/3. The solution of Eq. (16) is
then chaotic and we plot in Figs. 4 and 5 some time series of X and ζ . On-off
intermittency disappears when µ increases and thus, accordingly, S decreases. This
effect is coherent with our former interpretation of the role of the zero frequency
noise spectrum. Indeed we have a/S = 0.332 for Fig. 5a and a/S = 5.64 for
Fig. 5d. We also compute numerically the PDF of X and compare it with the
expression given by (5). The results are plotted in Fig. 6. There again, for small
values of the noise amplitude, the agreement between the prediction and the
numerical results is very good.
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Fig. 5. Function ζ (t) obtained from the solution of the Lorenz system through Eq. (17). (a): µ = 0,
(b): µ = 0.5, (c): µ = 0.65, (d): µ = 0.8. Note the difference in the horizontal scales t with Fig. 4.

4. STATISTICS OF THE DURATIONS OF THE LAMINAR PHASES

The intermittent regime can also be identified by the statistics of durations τ

of the laminar phases close to zero (see e.g., Fig. 1a). We discuss in this section
numerical results for the durations of the laminar phases, obtained by using the
random process defined in Eq. (13).

In the close vicinity of the threshold, when a → 0+, a power law with an
exponent −3/2 is expected for the PDF of τ . (20) This is in agreement with Fig. 7
where we plot the PDF of τ for S = 0.159 and for various values of a. The threshold
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Fig. 6. Left figure: Probability density function of the solutions of Eq. (1) when ζ (t) is obtained from
the Lorenz system through Eq. (17). The parameter values are the same as those of Fig. 4: a = 0.01,√

< ζ 2 > = 0.2. The continuous lines are the theoretical predictions given by Eq. (5). The symbols
represent the numerical computation of the PDF: (◦): µ = 0, (�): µ = 0.5, (�): µ = 0.65, (∗): µ = 0.8.
Right figure: same results in loglog scale.
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Fig. 7. PDF of the duration τ of the laminar phases, for S = 0.159 and a varying from 0.008 to 0.0796
(= S/2). The arrow indicates the curves for increasing values a.

under which X is considered to be in the laminar state is chosen arbitrarily to be
fifty times smaller than the noise intensity. However, we have verified that the PDF
of τ does not depend strongly on this choice if the threshold remains small enough
compared to the maximum of the bursts.

We observe that the cut–off takes place at smaller values of τ when a is
increased. More precisely Fig. 8 shows that the PDF of τ can be fitted by

P(τ ) ∝ τ−3/2. exp(−τ/θc) , (18)

where the characteristic time of the cut–off θc is proportional to S/a2. Indeed, the
upper right inset shows that log (P(τ )) + 3/2 log(τ ) is linear with τ in agreement
with (18). Moreover, the central curve shows that all the characteristic times θc

collapse on a single line if they are plotted as a function of a2/S.
This is in agreement with the exponential cut–off derived for white noise in

refs. 19 and 20. In the white noise case, the PDF of τ follows Eq. (18) with θc

proportional to D/a2 where D is the intensity of the white noise. Our numerical
studies show that in the limit of small S this prediction remains valid for a non-
white noise if we use S instead of the noise intensity. Here again the noise power
spectrum at zero frequency controls the value of θc. As discussed in Part (VI.A),
laminar phases occur when a random walk associated to the noise remains with
the same sign for long durations. For small S this property is controlled by the
noise power spectrum at zero frequency.
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PDF of τ is well represented by (18). The lower–left inset shows that the collapse is not obtained if θc

is plotted as a function of a2/α2.

5. NUMERICAL SIMULATIONS FOR A BIFURCATING SYSTEM

OF SECOND ORDER IN TIME

The Duffing oscillator and the effect of a multiplicative noise on its dynamics
have been widely studied. Once the time is rescaled by the viscosity, the Duffing
oscillator perturbed by a multiplicative noise can be written as

Ẍ + Ẋ = (a + ξ )X − X3 . (19)

Lücke and Schanck(11) used an expansion valid for a small noise amplitude and
close to the deterministic threshold. They showed that a small amount of mul-
tiplicative noise can stabilize the state X = 0 for positive a, whereas in the de-
terministic case, X = 0 is stable only for negative values of a. They calculated
the threshold shift induced by the noise and found its expression as a function of
the noise Power Density Spectrum. Their expansion leads to the usual behavior
for the moments 〈X2p〉 which are proportional to the departure from onset to
power p. Note that their analysis is correct only for noise with a vanishing PSD at
zero frequency. (19) However, a recent study(12) of the Duffing oscillator subject to
Gaussian white noise or Ornstein-Uhlenbeck noise has predicted an intermittent
behavior and a linear scaling of the moments < X2p > of the unstable variable
with the departure from onset. In order to clarify this apparent contradiction be-
tween Refs. 11 and 12 and to investigate the effects of the low frequency part of
the noise spectrum on the Duffing oscillator, we study numerically Eq. (19) with
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result (22).

the colored noise defined by (13) for which the PSD is given by

S(ν) = α2η(�2 + η2)

π [(�2 + η2 − ν2)2 + 2ν2η2]
. (20)

Contrary to the case studied in Secs. 2–4, the onset of instability is shifted by the
noise. We thus have to take into account the new threshold ac. For small noise
amplitudes, this threshold is given by ref. 11

ac =
∫ +∞

−∞

S(ν)

ν2 + 1/(2π )2
dν, (21)

= 2α2(1 + 4πη)

1 + 4πη + 4π2(�2 + η2)
. (22)

This theoretical result agrees with the numerical data (Fig. 9), taking into account
the uncertainty in the numerical determination of the threshold.

Figure 10 shows the temporal trace of X (t) above onset. It emphasizes the
fact that S is still the pertinent parameter controlling the intermittent regime for
small noise, i.e., for α2 << 1. The same behavior is observed for the temporal
trace of the other dynamical variable Ẋ (t).

Besides, Fig. 11 shows that the statistical behavior of the variable E = X2 +
Ẋ2 is similar to the one of the variable X2 in the first order system studied in Secs.
2–4. Indeed, the PDFs of E divided by Eγ with γ = a−ac

2S − 1 collapse on a single
exponential for various values of a. Notice that the departure from the onset in
the presence of noise must be taken into account. Therefore, when the amplitude
of the noise is small, the PDF of the energy is controlled by the ratio between the
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Fig. 10. Temporal traces of the dynamical variable X (t), solution of Eq. (19). In all cases a − ac =
0.0754, α2 = 0.05 and the autocorrelation function of the noise is given by (14), but S is decreased
from top to bottom.

departure from onset (in the presence of noise) and the value of the noise spectrum
at zero frequency. When the amplitude of the noise is large, the PDF of the energy
does not take the form suggested in Fig. 11. However, even if the noise amplitude
is large, on-off intermittency disappears when the value of S is lowered.

To conclude this part, we point out that the failure of the perturbative ex-
pansion(19) and the linear scaling of the moments as a function of the departure
from onset (12) are both a consequence of on-off intermittency that occurs when
the noise is sufficiently large at low frequencies.

6. PHYSICAL INTERPRETATIONS AND SUMMARY

6.1. Role of the Low Frequencies of the Noise

In the different systems we have studied, on-off intermittency is controlled by
the zero frequency component of the noise. Our interpretation of the phenomenon
is the following. On-off intermittency occurs because of a competition between
the noise and a systematic drift due to the departure from onset. More precisely, as
pointed out in ref. 8 for the case of Eq. (1), when X is close to the unstable manifold
X = 0, the evolution of Y = log X is given by Ẏ = a + ζ (t). For positive a, Ẏ has
a positive average but events in which Y has a decreasing behavior are possible
provided that I = ∫ T

0 ζ (t)dt/T remains smaller than −a over a long duration.
In the long time limit, the main contribution to the integral I is due to the zero
frequency component of the noise. If this component is reduced then occurrences
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Fig. 11. Probability Density Function of E = X2 + Ẋ2 divided by Eγ with γ = a−ac
2S − 1 and for

a−ac
2S going from 0.6 to 5.0. The inset in log–log plot underlines the plateau where the power law

dominates the PDF.

of the inequality I ≤ −a become less and less probable and intermittency tends
to be suppressed.

6.2. Linearity of the Moments

We now want to explain why, close to the onset of instability, all the moments
vary linearly with a, the departure from onset. One can say that this is a direct
consequence of the form of the PDFs that are power laws with exponents close to
−1, the difference from −1 being proportional to a (see Eqs. (2), (5), and (9)).
However, we look here for an explanation based on the dynamical properties of
the trajectories X (t).

In the small a limit, the variable X spends long durations in the off-phase
and, from time to time, it takes non-zero values. A typical trajectory is sketched
in Fig. 12. Let Ti be the duration of the i-th on-phase and Te = T1 + T2 + · · · be
the total time spent in the on-phases during the measurement time T .

During the on-phases the evolution of X can be described approximately by
a random walk with a drift in terms of the variable Y = log X ; besides, the effect
of nonlinearities can be modeled by a wall that prevents Y from reaching too high
values. Let us call Cn the averaged value taken by Xn during an on-phase. Using
the fact that the off-phases have a negligible contribution to 〈Xn〉, we can write
approximatively for a large measurement time T

〈Xn〉 = 1

T

∫ T

0
Xn(t ′) dt ′ 	 Te

T
Cn . (23)
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Fig. 12. Sketch of the intermittent regime with Ti the duration of the i th burst.

For large T , Te/T is the product of the averaged duration of an on-phase with
the averaged frequency of occurrence of an on-phase. Using the aforementioned
analogy with a biased random walk limited by a wall, we conclude that the
averaged duration of an on-phase is finite when the drift a tends to zero. Moreover,
the averaged frequency of occurrence of an on-phase is proportional to a and
therefore Te/T is also proportional to a. This scaling law is tested numerically
for Eq. (1) with Gaussian white noise. We plot in Fig. 13 the quantity Te/T as a
function of a : The relation is linear when a/D is small.

Finally, Cn the averaged value of the n-th moment of X during the on-phase
can be calculated in the case of a Gaussian white noise using eq. (5); Cn tends to
a non-zero constant when a tends to zero. This fact can be understood using the
analogy with the biased random walk limited by a wall: the typical trajectories
restricted between the onset of the on-phase and the wall do not depend on a for
vanishing a.
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Fig. 13. Total duration of the on–phase, Te , normalized by the total duration of the measurement, T ,
as a function of the departure from the threshold, a, given for two values of the white noise intensity
〈ξ (t)ξ (t ′)〉 = Dδ(t − t ′).
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To summarize, when a is very small, the system enters on-phases with a
frequency linear with a. However, the duration of these on-phases and the values
reached by the system during these phases do not depend on a. Therefore, using
Eq. (23) and the above discussion, we conclude that

〈Xn〉 ∝ a , (24)

i.e., all the moments are linear with the departure from onset.

6.3. Summary

We have studied different bifurcating systems subject to multiplicative noise.
For a system of first order in time and for a small value of the product of the
noise amplitude with its correlation time, an expansion showed that on-off inter-
mittency occurs if the noise spectrum at zero frequency is greater than twice the
departure from onset. This prediction is in agreement with numerical simulations
that use colored random processes or chaotic fluctuations as noises. In the same
limit we have shown that the statistics of the durations of the laminar phases are
also controlled by the departure from onset and the noise spectrum at zero fre-
quency. Even at finite amplitude of the noise, we have verified numerically that
intermittency disappears when the low frequencies of the noise are filtered out.
This result is also derived analytically for a Gaussian white noise and for another
particular kind of noise, the dichotomous Markovian process. For a system of
second order in time, we have numerically studied the behavior of the unstable
variable and showed that for small noise amplitudes, the PDF of the energy scales
as a power law with exponent controlled by the noise spectrum at zero frequency
and the departure from the onset. Here again, by lowering the noise spectrum at
zero frequency, the on-off intermittency is reduced and can be suppressed. Finally,
we have given some physical explanations for the effect of the noise spectrum at
zero frequency on on-off intermittency and for the behavior of all the moments of
an on-off intermittent variable that are linear with the departure from onset.

APPENDIX: DERIVATION OF THE CUMULANT EXPANSION FOR A

DYNAMICAL SYSTEM OF FIRST ORDER IN TIME

If we consider one realization of the noise ζ (t) as a single time dependent
forcing, then for a given initial condition X (t = 0), Eq. (1) describes a single
trajectory. In other words, for a given realization of the noise, the number of
trajectories in phase–space is conserved. A continuity equation for the density of
trajectories in the phase–space ρζ (X, t) can therefore be written (1) as follows :

∂tρζ (X, t) = −∂X [Ẋρζ (X, t)]

= −∂X [(aX − X3)ρζ (X, t)]

−α∂X [Fζ (X, t)ρζ (X, t)] , (25)
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where α is the standard deviation of the noise and

Fζ (X, t) = ζ (t)X (t)/α.

The PDF of X (t) is just the average of ρζ (X, t) over all the realizations of the
noise. Therefore, by averaging Eq. (25), an evolution equation for P(X, t) can
be derived. Some approximations are however necessary to obtain an equation
which is closed with respect to P(X, t). In ref. 1 (pp. 210), Van Kampen expands
Eq. (25) in powers of the parameter ε = α2τc where τc is the correlation time of
the noise. Assuming that ε << 1 and knowing that 〈Fζ (X, t) · Fζ (X ′, t ′)〉 ∼ 0 for
|t − t ′| > τc, the following equation for P(X, t) is derived:

∂t P(X, t) = −∂X

[−(aX − X3)P(X, t)
]

(26)

−α2∂X

{[∫ ∞

0

〈
∂ Fζ (X, t)

∂ X
Fζ (X−τ , t − τ )

〉 ∣∣∣∣ d X

d X−τ

∣∣∣∣
]

P(X, t)

}

−α2∂2
X X

{[∫ ∞

0
〈Fζ (X, t)Fζ (X−τ , t − τ )〉

∣∣∣∣ d X

d X−τ

∣∣∣∣
]

P(X, t)

}
,

where X−τ = Xo(t − τ ) is the deterministic backward position, i.e., X−τ repre-
sents the value of the variable X at time (t − τ ) such that X would evolve upto
Xo(t) during the duration τ if there were no noise. The quantity

∣∣ d X
d X−τ

∣∣ is the
Jacobian of X with respect to X−τ . Equation (26) is a second order expansion in
power of the small parameter ε = α2τc and is therefore valid as long as ε << 1.

For Eq. (1), all the quantities such as X−τ and the Jacobian can be explicitely
calculated. By solving (1) with ζ (t) = 0, we find that

X = ± {[
(a(X−τ )−2 − 1) exp(−2aτ ) + 1

]
/a

}−1/2
,

X−τ = ± {[
(aX−2 − 1) exp(2aτ ) + 1

]
/a

}−1/2
,∣∣∣∣ d X

d X−τ

∣∣∣∣ = (X/X−τ )3.

Finally, Eq. (3) is obtained by substituting the expressions for
∣∣ d X

d X−τ

∣∣ and X−τ

in Eq. (26) and writing Fζ (X, t) = ζ (t)X (t)/α.
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